Oraclizer: The Oracle State Machine
Ensuring Regulatory Compliance

Facilitating Capital Efficiency between Traditional and
Decentralized Finance in Tokenized Capital Markets

Horizen Korea, Oraclizer Core
Jinwook.Kim (Jay @oraclizer.io)
v.0.1.2 — November 14, 2024

Abstract

Oraclizer is a novel thesis introducing the first regulatory-compliant oracle state machine that achieves state
synchronization between on-chain and off-chain (even non-blockchain) oracle segments. Through

zk proof-based oracle state verification, it ensures the validity of bidirectional state synchronization, and by
implementing a Layer 3 architecture utilizing the Validium approach and offloading zk verification computations,
it achieves cost reductions of over 93% compared to conventional oracle solutions. Furthermore, unlike
traditional oracles that charge per individual call, Oraclizer realizes state synchronization oracle without user’s
additional costs by automatically managing continuous state updates on-chain after the initial state

synchronization through a single oracle call.

Oraclizer adopts as its system design principle the Regulatory Compliance Protocol (RCP) paper, published in
March 2024 by the Oraclizer Core team, which standardizes 31 key regulations from 15 global financial
regulatory authorities that may impact tokenized capital markets. This integration inherently embeds and ensures
financial regulatory compliance throughout the system. Notably, through integration with DAML(CANTON)-
based financial RWA tokenization solutions, which guarantee contract completeness through privacy and robust
authority models, it implements complete state synchronization contracts that differentiate it from existing
oracle technologies. This facilitates the maximization of capital efficiency between TradFi and DeFi, while
promoting tokenization and liquidity innovation for various real-world assets (RWA), including gaming assets

and real estate.

Content

1. Introduction
* Background
* Problem Statement
» Key Innovations

» System Overview

2. Regulatory Compliance Protocol(RCP)
* Importance of RCP
* OIP succeeds RCP

* Regulatory Enforcement Mechanisms

3. System Architecture
* Oracle State Machine
* L3 zk-Rollup Infrastructure

* Decentralized Sequencer Design



4. Core Components
* Oracle Caster: RWA Tokenization
* OIP: Oracle Interoperability Protocol
* OSS: Oracle State Synchronizer
* Drivers: CANTON Integration

S. Implementation & Integration
* DeFi Protocol Integration
¢ Traditional Finance Connection

* Gaming RWA Integration

6. Performance Analysis
* Scalability Metrics
* Cost Analysis
* Security Evaluation

* Compliance Verification

7. Future Development
* Research Directions
* Roadmap

* Ecosystem Expansion

8. Conclusion

1. Introduction

Background

As digital transformation accelerates for financial inclusion and capital efficiency innovation in capital markets, DLT
has opened new frontiers in financial innovation. However, despite offering similar token dynamics, the ‘silo issues’
between TradFi tokenization solutions, as well as between TradFi and DeFi, remain unresolved, resulting in
fragmented ecosystems. While TradFi manages massive capital based on strict regulatory compliance and stability,
its closed structure limits innovation. Conversely, although DeFi demonstrates innovative financial products and high
capital efficiency, institutional investor participation remains restricted due to the absence of regulatory

compliance mechanisms.[1]
Problem Statement

The interoperability of tokenized assets in capital markets entails extensive technical and regulatory challenges.
Financial regulatory authorities require strict regulatory compliance, such as AML and KYC, which cannot be
exempted in on-chain environments.[2] To date, no solution has been presented that achieves efficient state
synchronization while meeting these regulatory requirements. Current oracle systems demonstrate the following

fundamental limitations:



Limited State Synchronization
* Functionality confined to unidirectional data transfer or minimal bidirectional messaging
* Inability to fully represent and control the state of complex financial products

* Failure to ensure state consistency in cross-chain environments

Absence of Regulatory Framework
* Lack of systematic requirements integration due to lack of regulatory research
» Absence of mechanisms to verify regulatory compliance

+ Failure to meet core regulatory requirements including financial privacy and AML

Inefficient Mechanisms with Limited Scalability
* Inefficient and high transaction costs due to monolithic architecture and per-call pricing policies
* Limited data sources primarily focused on public data such as price and weather

* Poor scaling strategy with limited expandability beyond set maximum capacity

Key Innovations

Our oracle system aims for groundbreaking innovations in terms of liquidity and capital efficiency, interoperability,

security and decentralization, product diversity, cost improvement, and regulatory compliance. In particular, through

the Oracle Interoperability Protocol (OIP) and Oraclizer, we can achieve liquidity innovation by providing a highly

simplified deployment that enables DApps on all EVM chains to interoperate with TradFi's financial RWAs on-chain.

1.

2.

Full Spectrum Interoperability

* Offchain to Offchain (even non-EVM): Inter-Domain interoperability through CANTON'!
* EVM to EVM: Inter-Domain interoperability between EVM chains

* Offchain to EVM: Cross-Domain interoperability (oracle) through OIP and Oraclizer

e - Jetes.s

Cross-Domain Interoperation(Oracle) Inter-Domain Interoperation

Figure 1. Interoperability models

Realizing the Oracle Mauture-stage

* Initial Stage: Public data source oracle

* Advanced Stage: Diverse data sources and programmable oracle

» Mature Stage: Complete state synchronization contracts ensuring diverse data sources and regulatory

compliance

1. DLT infrastructure for financial institutions, offering enhanced privacy and controls



A ol

Initial Stage Advanced Stage Mature Stage

Blockchain Blockchain Blockchain

— - =1
> V'IL'J“L coo E] !6] coe E] E e

Figure 2. The Evolutionary Stage of Oracle

3. Pursuit of Institutional-Grade System Reliability through Complete Regulatory Compliance
« Finality: Ensures financial contract completeness in Cross-Domain interoperability
(enabling simultaneous settlement and clearing models like DvP?)
* Offchain Privacy: Integration of DLT solutions on a ‘Need to know’? basis
* Onchain Privacy: ZK proof method that does not partially expose transaction records,
Abstraction (mixing) of KYC-verified IDs into pseudonymous Oracle Contract IDs (OCIDs)
* Enforceability: Mitigation of financial risks through support of financial regulatory sanctions via contract
languages with robust authority models (e.g., asset freezing, forced liquidation)
¢ Traceability: Enabling 'System-wide AML' with OIP specification, DAML Party ID* and zk-basis-ID to

enforce asset and (pseudo)identity across protocols

4. Security and Decentralization
* Ensuring liveness through final state updates on L1
* Stagel rollup model through decentralized sequencer

* High security margin via zk proofs

5. Intuitive System Deployment: High Integration with Legacy DeFi
« Simple integration process with CANTON.network® and other RWA CANTON domains through contract

invitation and minimal code modifications[3]

» Legacy DeFi protocols on EVM chains can intuitively query and trade oracle-processed RWA states from
external systems by simply referencing bridge contract addresses and calling standardized interfaces defined

by OIP specifications

6. Pioneering New RWA Markets
* Development of new financial products for various RWAs through bidirectional state contracts
* Support for "Tokenless Web3 Gaming' infrastructure for game assets where token issuance is constrained by
application platform limitations

* Risk diversification and new portfolio development through low-risk DeFi services

7. Cost-Efficient Synchronization Method and Scaling Strategy
* Ensuring oracle data freshness through automated state synchronization with single-call cost
* Over 93% reduction in gas fees per transaction through double compression of transaction batches via L3

and modular zk verification/DA layer

How to minimize settlement risk by taking delivery of securities at the same time as payment is made

How to increase privacy by only giving information to those who need it to do their job

An identifier that uniquely identifies a participant in a DAML smart contract. Indicates a party to the contract.

CANTON-based financial infrastructure designed for regulation and interoperability for financial firms; Goldman Sachs, Microsoft, and others are participating

4



System Overview

Oraclizer consists of a three-layer architecture comprising applications, protocols, and infrastructure.
Each layer ensures a scalable operational strategy through clear separation of responsibilities, providing dense

vertical integration from in-house RWA tokenization solutions to cross-chain state synchronization.

External Systems

Financial RWAs Alt RWAs
Financial Institution Gaming Platform
DAML (CANTON) ‘ ‘ DAML (CANTON)
oIP

Oraclizer Drivers

‘ CANTON ‘ ‘ HL-BESU ‘ ‘ APIs ‘

$

Oraclizer (Oracle State Machine)

‘ L3 ZK-Rollup ‘ ‘ Sequencer ‘ ‘ 0SS ‘

A

Decentralized Finance

DeFi Protocols ‘ ‘ Lending Protocols ‘ ‘ DEX

Figure 3. System Overview

1. Application Layer: The Application Layer processes tokenization of financial products and game assets
through Oracle Caster, and provides KYC functionality with privacy protection through zk-basis ID.
This layer, which directly interacts with end users, delivers user-friendly interfaces while ensuring

regulatory compliance.

* RWA tokenization (Oracle Caster)
* zk-basis ID (KYC/Privado.ID)

2. Protocol Layer: OIP is both a data modeling framework and specification that inherits RCP to ensure
regulatory compliance, enabling Cross-Domain interoperability between EVM and non-EVM systems as
well as Inter-Domain interoperability between EVM chains. The Oracle State Synchronizer (OSS),
operating on sequencer nodes elected by consensus of the decentralized sequencer, manages cross-chain
state synchronization according to OIP specifications. This layer, implementing the system's core logic,

ensures state consistency and synchronization efficiency.

* Oracle Interoperability Protocol(OIP)
* Oracle State Synchronizer(OSS)



3. Infrastructure Layer: The modular design is an advantageous strategy that enables sustainable integration
of new blockchains and protocols while securing scaling strategies. The infrastructure providing the system's

technical foundation consists of the following key components:

* L3 zk-Rollup: Offsetting overheads from oracle state recording, zk proof generation, and decentralized
sequencer

e Validium (Aail): Data availability compression

* Decentralized Sequencer: Stage 1 Rollup® for security

zk Verification Modular (zkVerify): Scalability and cost reduction through zk proof compression
RWA Registry Contract: RWA Registry and synchronized states

¢ Cross-chain Bridge Interface: Inter-chain assets, states, and message interface

External System Integration Drivers: CANTON, Hyperledger Besu, APIs

2. Regulatory Compliance Protocol (RCP)

At this point where tokenization of capital markets is accelerating, regulatory compliance has become a necessity
rather than an option.[4] RCP is the blockchain industry's first regulatory research paper published by the Oraclizer
Core team. Through in-depth analysis of recommendations and financial product guidelines from 15 global financial
regulatory authorities, it standardizes 31 key regulations that directly impact tokenized capital markets into five

common properties.[5]

I 1
A RecuLatory CoMmpPLIANCE ProTOCOL FOR ASSET INTEROPERABILITY BETWEEN TRADITIONAL AND DECENTRALIZED FINANCE IN TOKENIZED
CaprrtaL MARKETS 3

RCP wWB I5DA I05CO IMF FsB FATF BIS SFC HEMA EU ESMA FCA MAS FINMA FINRA

(1 o v v

“f =

ofefe]e

«J=
<
<
-,
<,
<,

=
.
<,

T3
<
<
<
<,
<
o |efe
4,
<,

LA RN EN EN

Table 1: Recommendation and Guidance of Regulatory Authorities
(1) Customer Identity Venification (2) High-Risk/Suspicious Transaction Monitoring (3) Detection of Changes to Customer ldentity Information (4) Contract Version Tracking {5) Exploration of Transaction History by
Assct Type (6) External Audit (7) S Role-Based Permissions (£) Asset Freeze (9) Asset Recovery (10) Trading Restrictions (11) Transaction Limit (12) Cancellation or Modification of Transactions (13) Pausing of
Trading (14) Suspension or Disposal of Smart Contract (kill switeh) (15) Blacklist Management { 16) Forced Liguidation (17) Privacy of Personal Information { 18) Privacy of Financial Transactions (19) Code Security
{20 Immutability of the Ledger {21) Finality of Transactions and Payments (22} Attaching Legal Documents {23) Token Expired Time (24) Token Transfer Restrictions (25) Issuance of Tokenized Cash (26) Issuance of
Tokenized Securities (27) Controlling Transactions Involving Splitting Below Decimal Units (28) Token Buming (29) Gasless Support (30) Asset Class Management (31) Token Supply Control

6. Vitalik Buterin defines Stage 1 as the "Limited Training Wheels" phase, indicating that rollups are at an intermediate stage in their progression toward complete
decentralization



financial market. This scenario demonstrates how RCP, unlike
ERC-1400 and ERC-3643, effectively adheres to the recom-
mendations and guidelines of regulatory authorities in the asset
tokenization process.

In the financial technology domain, the RCP is pivotal for bond
tokenization and lifecycle management. Utilizing Distributed
Ledger Technology (DLT) and smart contracts, the RCP enforces
compliance, ensures transparency, and secures operations. The
following sections detail this process, including the critical role
of legal counsel in notarization, which is integral to the legal
and regulatory compliance checks.

The initial stage involves legal and regulatory compliance checks
by issuers and their legal counsel, including notarization to
ensure the authenticity and enforceability of the documents.
This is represented as:

Fprep = Z plw, /llcgms ORCP> Vnotarization)
wel)

where Iy, indicates preparatory operations, Q the set of re-
quirements, p the compliance function, 4., legal advisories,
orep the RCP’s compliance mechanisms, and vygarization the
notarization process by legal counsel.

The next step, tokenization and issuance, involves using smart
contracts to either create Tokenized Cash (FT) or Securities

€, e Tepresents trading and compliance operations, 1jgcp the
RCP’s function, pryrage trade requests, Veompliance compliance
checks, and vyguarization the notarization of compliance docu-
ments,

The process concludes with maturity and settlement, where
assets are transferred following gasless settlements, and nota-
rization ensures the legal validity of the settlement documents
and agreements:

Ssetile = gRCP(ﬂ'malurityuﬁwltlemems Votarization )

Eseule indicates maturity and settlement operations, {gcp the set-
tlement function, @mawriry Maturity checks, Bemtement Settlement
executions, and Vygarizarion the notarization process ensuring the
legal validity of settlement documents and agreements.

In the Preparation Phase, establishing a robust framework of
legal and regulatory compliance is paramount. The formulation

18:
Toep = |_J () x () ¢(0)

AcA deA
Tprep symbolizes preparatory operations, A represents legal ad-
visories, o maps legal advisories to their compliance metrics,
A is the set of regulatory requirements, and ¢ verifies compli-
ance for each requirement. This captures the alignment of legal
advisories with regulatory requirements.

Figure 4. RCP Paper written by Oraclizer Core Team

Importance of RCP

Asset interoperability in capital markets extends beyond mere technical challenges. Regulatory compliance becomes

the core standard of value in this process, and RCP provides clear coordinates for such value judgments.

Any interoperability technology that does not comply with RCP, namely the regulatory requirements of global

financial regulatory authorities, is like navigation without a compass. Particularly in situations requiring financial

regulatory oversight and intervention, if there is no regulatory framework, any interoperability and oracle

technology is essentially nonexistent. To that extent, it can nullify the entire system's existential value.

OIP succeeds RCP

RCP, established through thorough regulatory research, is not merely a set of regulations but represents the essence of

service that ensures the complete value of capital liquidity technology. OIP, which inherits the non-functional

requirements derived from the five regulatory properties standardized in RCP, guarantees the following core values:

1. Finality (Completeness)

* 7k proof-based state synchronization: Ensuring transaction atomicity

» OSS: Maintaining state consistency across oracle and cross-chain operations

* DAML contract: Guaranteeing legal enforceability through abstraction of rights and obligations

7. Digital Asset Modeling Language, Smart contract programming language specialized for modeling financial workflows



2. Traceability
 System-wide AML: Identity integration and management at protocol level
* Cross-chain Registry: Tracking asset states and transfer paths
» OSS Event Monitoring: Event sourcing and management of complete state change history

* Audit Trail System: Audit tracking functionality for regulatory authorities

3. Confidentiality
* 'Need to know' basis ledger model
* zk proof-based privacy compliance
+ Selective information disclosure mechanism

* Encrypted state synchronization

4. Enforceability
* DAML's robust authority model
* Asset freezing capability for regulatory authorities
* Forced liquidation mechanism

 Automatic sanction execution upon regulatory violations

5. Tokenizability
* Oracle Caster: RWA tokenization solution
» ERC-3770: Cross-chain addressing scheme
* Cross-chain bridge interface: Standardization of inter-chain asset transfers

* RWA Registry: Standardized management of tokenized assets

Regulatory Enforcement Mechanisms

The regulatory enforcement mechanism is the ultimate purpose and core of regulatory compliance.

While completeness, traceability, and confidentiality provide the foundation for regulatory compliance at the
infrastructure level, enforceability is the key element that actualizes regulatory effectiveness on this foundation,
and must be implemented across both infrastructure and application layers. If effective supervision and intervention
by regulatory authorities cannot be guaranteed, all other regulatory compliance efforts inevitably lose half their

significance.

Through RCP research, the Oraclizer Core team discovered that ERC-1400[6] and ERC-3643[7], the widely used
security token standards, do not fully meet the requirements of modern financial regulations. They show particularly
significant limitations in implementing system-wide sanction mechanisms. Overcoming these limitations requires a
new Ethereum Improvement Proposal (EIP), and the Oraclizer team is currently preparing a new security token

standard that enables more comprehensive regulatory compliance.



Enforcement Flow

\4

\4

Pre-Execution Validation OSS Monitoring Post-Execution Verification

KYC/AML Verification OCID Tracking Audit Trail Generation

Figure S. OIP Enforcement Mechanism

3. System Architecture

One of blockchain's greatest challenges is the reliable integration of external data.| 8| Blockchain inherently
guarantees strong integrity of internal states through consensus among network participants. However, the 'oracle

problem' - safely reflecting external world data onto the blockchain - still lacks a complete solution.

Oracles are not mere data transmitters but core infrastructure that extends blockchain's trust boundary to the external
world. This entails two fundamental challenges. First, the authenticity of oracle data must be guaranteed| 9],

and second, oracle data must maintain synchronization and consistency with the blockchain state.

Existing oracle solutions have only partially addressed these challenges. Most approaches focused on unidirectional
data transmission, resulting in high costs and inefficiencies due to structures requiring continuous data calls and
verification. Moreover, despite existing oracles' exposure to off-chain regulatory environments, higher-order

requirements such as regulatory compliance and complete state synchronization were rarely considered.

For blockchain technology to achieve truly meaningful financial innovation, oracles must evolve beyond simple data
bridges. The requirements of modern financial systems, including TradFi and DeFi integration, financial RWA
tokenization, and regulatory compliance, demand a new dimension of oracle architecture.

This necessitates the following key characteristics:

1. State Consistency: Bidirectional state synchronization between blockchain and external systems to ensure

legal completeness of contracts
2. Regulatory Compliance: Systematic assurance of financial regulatory requirements
3. Scalability: Performance capacity to process large-scale financial transactions

4. Economic Efficiency: Sustainable Gas fee structure

Oraclizer is a new oracle paradigm designed to realize this vision. Its oracle state machine architecture, based on
zk proofs, fundamentally resolves the limitations of existing oracles while comprehensively delivering the
characteristics demanded by modern financial systems. In particular, OIP, which inherits RCP's regulatory
compliance framework, provides the essential foundation for blockchain technology's entry into institutional

frameworks.



Oracle State Machine

The oracle state machine is a system that implements state synchronization between off-chain and on-chain systems.
Unlike existing oracles that simply transmit data, Oraclizer guarantees bidirectional state synchronization and
liveness by tracking all state change histories off-chain, mathematically proving the validity of these transitions, and

finalizing updates to L1.

1. State Capture
* Integration of DAML Party ID, Contract ID, and ERC-3770[10] addr as leaf node states in Sparse
Merkle Tree (SMT)3

* Detection of state changes by decentralized sequencer through DAML event sourcing or external DLT

contracts
* Collection of metadata for state changes

* Identification of regulatory compliance requirements such as KYC

2. State Transition Verification
* Verification of transition rule compliance through OIP
* Validation of regulatory restrictions

* Business logic validation

3. State Proof Generation
* Generation of zk proofs for state verification after state changes

* Ensuring integrity of state changes

4. State Synchronization
+ Submission of changed state proofs and summary information as L1 to achieve finality
+ Update of cross-chain state consistency after OSS verification of L1 finality

* Rollback mechanism for regulatory enforcement actions such as cancellation and liquidation

L3 zk-Rollup Infrastructure

The L3 structure, serving as the core infrastructure of the oracle state machine, compensates for the scalability
degradation inherent in the paradoxical adoption of consensus algorithms in rollup structures for maintaining
decentralization, while securing additional scaling strategies for oracle state synchronization processing through

modular architecture.

1. Scalability
» Compensating for performance loss from decentralized sequencer implementation through additional
zk proof compression
 Improving throughput via off-chain data availability layer and computational offloading of zk

verification through zkVerify®

8. A cryptographic data structure used to efficiently store and prove large key-value mappings.
9. Horizen Labs' zk Proof Verification Network (zkVerify.io). Reduce zk verification costs and simplify complexity

10



2. Security
* Ensuring reliability of state transitions through multi-layered zk proof structure
* Guaranteeing data availability through Avail's KZG polynomial commitment
+ Enhancing security through independent verification layer of zkVerify

DAML Contract 0858 ORACLIZER(L3) | | Avail DA Layer || zkVerily || L2 zklEVM || L1 Ethereum

DAML Event Detgetion
State Changp [Detection via Led,

e

FCCo M

r APl

=l

"
-

ate Change Evént

Sequencer Activation & State Event Transfér

T

i

Create L3 ZK-Rollup Block

e

o0 C

Pgst. Transaction Dat

fn

Process DAl Layer Tasks

GRANDPA Consensus
LI A
Hrpwvide DA Attestatjon

Request ZK Propll Verification

b

Submit Atpastation to L1

Verification Copfirmation

Pre-confirmatiof State

T

LU
Suibmit to L2

L2 State Updlate

< !

il |

Subimnit to L1

Validate

e

-1

Figure 6. Oraclizer(L.3) Core Flow

11



3. Cost Efficiency
* Dramatic reduction in zk proof verification costs (zkVerify)
* Optimization of data availability costs (Validium/Avail)
* Up to 93% reduction in Gas fees

Decentralized Sequencer Design

Ensuring immutability in inter-layer state propagation is a critical design principle directly linked to contract finality.
Particularly in higher-order layers like L3, a centralized sequencer would compromise system reliability. Since
liveness can be guaranteed through L1, adopting high security margin consensus algorithms in decentralized
sequencer mechanisms creates additional overhead issues. To achieve Stage 1 rollup, Oraclizer implements the
'D-quencer’ consensus algorithm with BFT properties, utilizing equal-stake POS to reduce weight calculation
overhead and selecting Active Asserter from the Standby Asserter group through VRF based on Boneh-Lynn-
Shacham (BLS) signatures, followed by consensus through multisig of identical signatures.

(p32: StatelL3 — Statel2 @3, (s) = (h(s), 732, metadata)
V's & StateL3: Verify(psz(s)) — true

P21: StatelL2 — StateL 1 @, (s) = (h(s), 72;, metadata)

D =@y1 © P32
* h= state hash

* T3, =zk-Proof{state transitions)

Figure 7. Cross-Layer Oracle State Propagation

1. Decentralized Sequencer Configuration and Staking
» Comprising 10-100 nodes in D-quencer consensus, considering maximum fault tolerance and marginal utility
+ Eliminating weight calculations by staking equal assets (reducing overhead)
* Ensuring fair election opportunities for Standby Asserter nodes

* Preventing malicious actions through multisig-based mechanisms (with slashing implementation)

2. Sequencer Election Mechanism
* VRF output values from each node — candidate pool election — election of node with minimum VRF output

* Elected sequencer operates for a predetermined epoch

3. Core Functions of Active Asserter
* Transaction ordering based on nonce
* Requesting zk proof generation
* Communication and verification with each modular (validating state transition validity)
* State synchronization through OSS and prevention of oracle double-spending

* Cross-chain messaging

12



POS Staking Stage

Node 1 Node 2 Node 3

Node N
(Equal Stake)

(Equal Stake) | | (Equal Stake) | | (Equal Stake)

v v

VRF Eleciion Stage

v

BLS-based RFRandom Election

Active Assértion Stage
v

Elected Asserter for Current Epoch

!

Transaction Ordering

State Lock Management

Consensus Stage

Elected Sequencer for Current Epoch

!

State Validation

!

State Synchronization

Figure 8. D-quencer Consensus

Cross-Chain Communication

Cross-chain communication managed by OSS enables secure and efficient message delivery and state
synchronization between various blockchain networks and DAML-based external systems. Furthermore,

it manages consistent accounts (users and contracts) across chains by supporting integrated address scheme

(ERC-3770) conversion in cross-chain environments.

1. ERC-3770 Integration

Oraclizer adopts the ERC-3770 address scheme to simplify fundamental address management issues in
cross-chain communication by resolving cross-chain complexities in RWA Registry contracts where
EVM chain DApps can intuitively contract in on-chain states, and by minimizing potential errors in state

management. It standardizes and manages inter-chain address schemes within OSS, while maintaining the

OIP specification unchanged to ensure compatibility with existing address schemes.

13




2. Bridge Transitions
* Ensuring atomicity and rollback of asset transfers: Lock— Verify—Execute
* Cross-chain state synchronization
« State transition occurs only when state changes are detected after state hash calculation of chain-specific
contracts (categorized into temporary/final phases)

* Recovery procedures

3. Bridge Verification
* Verification of bridge contracts for each chain
* Validation of regulatory compliance requirements

* Double-spending prevention verification

Connected Chains

CANTON L3 ZK-Rollup L2 zkEVM L1 Ethereum Other EVM Chains
(Oracle Caster) (Oraclizer) (OZ-Bridge) (OZ-Bridge) (OZ-Bridge)

T T T T T

Cross-ChainéBridge(OSS)
v

v v

Message Router

! ! !

ERC-3770 Address Handler Lock Manager State Validator

& 2 2 & 2

i : Communication Protocol :
\ 4 v v \ 4 v

Message Handler Signature Verifier State Sync

Figure 9. OSS-driven Cross-Chain Communication

4. System Architecture

Oracle Caster: RWA Tokenization

The ability to fully comply with financial regulations, which have the strictest regulatory environment, implies the
capability to meet regulatory requirements of any other industry such as gaming, real estate, and logistics.[11]
DAML, a Haskell-based high-order programming financial contract language used in the "U.S. Digital Dollar
Project," supports lightweight formal verification for mathematical validation and provides complete privacy up to
GDPR's 'right to be forgotten' through its strict ledger model, need-to-know basis 2-Phase Commit sub-transactions,
and ledger projection mechanisms. Additionally, despite being inter-party (signatories) contracts, it can provide
regulatory authorities with audit frameworks and controllable robust authority models, enabling secure implementation
of most financial regulatory compliance properties proposed in our RCP paper from the system core.

Oracle Caster, this DAML-based RWA tokenization solution, thus establishes a regulatory-compliant

foundation capable of tokenizing any form of RWA, from financial assets to real estate and gaming assets.

14



Even while operating in a closed on-premise environment, Oracle Caster enables transactions with on-chain DApps
through integration with Oraclizer CANTON Driver, allowing tokenized assets to interface with Oraclizer's state
synchronization mechanism. The capital efficiency of RWA traded on Oracle Caster can be maximized by

combining it with the highly liquid DeFi market through just a few lines of code modification in CANTON.
OIP (Oracle Interoperability Protocol)

OIP, which simultaneously achieves complete asset mobility, traceability, and transaction party privacy, serves as
Oraclizer's central nervous system, governing oracle contract atomic state synchronization, cross-chain bridges, and
RWA Registry synchronization. As a protocol managing interoperability between EVM, non-EVM, and cross-chain
systems, it has the following structure.

The OCID in OIP specifications is a unique identifier combining DAML party ID and on-chain KYC ID (e.g.,
Privado.ID), generated for each oracle contract. This represents a pseudonymous ID that ensures traceability while

maintaining privacy of contract parties' identities.

OIP SPEC. v0.1.0
{
"version": "0.1.0",
"spec": {
"ocid": {
"damlPartyId": "string", // Unique identifier for DAML contract participant
"zkId": "string" // Privacy-preserving ZK identity identifier
I3
"address": {
"chainId": "string", // Target chain network identifier
"addr": "string" // Chain-specific address in ERC-3770 format
I3
"asset": {
"assetType": "enum", // Asset classification (ERC-20, BOND, STOCK, etc.)
"balance": "number", // Current asset balance
"metadata": "object", // Additional asset-specific information
"lockStatus": "enum", // Asset state (UNLOCKED, TEMP_LOCKED, PERM_LOCKED,

REGULATORY_LOCKED)
"lockExpiration": "timestamp",// Expiration time for temporary locks
"regulatoryAuthority": { // Regulatory action details
"id": "string", // Authority identifier
"orderDetails": "object" // Detailed regulatory order information

}s

"contract": {
"contractId": "string", // Unique contract identifier
"contractStatus": "enum", // Contract state (PENDING, ACTIVE, COMPLETED, etc.)
"contractLockStatus": "enum", // Lock state of contract
"participants": ["ocid"], // Array of participating OCIDs
"regulatoryAction": "object" // Associated regulatory actions

}s

15



"kycStatus": {
"isVerified": "boolean", // Verification status
"lastVerificationTimestamp": "timestamp", // Last verification time
"kycLevel": "enum" // Verification level (BASIC, ADVANCED, PREMIUM)
}s
"message": {
"ocid": "object", // Oracle Contract ID reference
"asset": "object", // Asset information
"contract": "object", // Contract details
"kycStatus": "object", // KYC verification status
"timestamp": "timestamp", // Message creation time
"signature": "string", // Cryptographic signature
"sourceChainId": "string", // Origin chain identifier
"oracleNodeId": "string", // Processing oracle node identifier
"messageType": "enum", // Type of message (ASSET_UPDATE, CONTRACT_UPDATE,
etc.)
"regulatoryInfo": "object", // Additional regulatory information
"extraData": "object" // Extension fields
}s
"regulatoryAction”: {
"actionType": "enum", // Action type (FREEZE, SEIZE, CONFISCATE)
"authority": "object", // Acting regulatory authority
"orderDetails": "object", // Detailed order information
"actionTimestamp": "timestamp", // Action execution time
"affectedAssets": ["assetId"], // List of affected asset identifiers
"affectedContracts": ["contractId"], // List of affected contract identifiers
"complianceStatus": "enum" // Current compliance status
}
}
}

OIP normalizes cross-chain address management using the ERC-3770 scheme while maintaining compatibility with
existing address systems. External interfaces use chain-specific base address formats, while internally OIP converts
them to ERC-3770 format (chainld:address) through its Address Handler. The Oraclizer team is preparing a new EIP
proposal to implement regulatory enforcement mechanisms (FREEZE, SEIZE, CONFISCATE, among others) in EVM.

NEW-EIP (draft)

// SPDX-License-Identifier: MIT
pragma solidity 70.8.19;

/**
* @title IRWARegistry
* @notice Central registry interface for managing regulatory compliance and enforcement of
Real World Assets (RWA)
* @dev This registry acts as the single source of truth for asset compliance status
*/
interface IRWARegistry {
// ... [previous enum, event definitions]

16



/%%
* @title IRWARegistry
* @notice Central registry interface for managing regulatory compliance and enforcement of
Real World Assets (RWA)
* @dev This registry acts as the single source of truth for asset compliance status
*/
interface IRWARegistry {
// ... [previous enum, event definitions]

/%%
* @notice Verifies if an asset is compliant and eligible for transaction
* @dev This function must be called before any asset transaction
* @param assetId Unique identifier of the asset to check
* @return status Boolean indicating if the asset is compliant
* @return restrictions Encoded restrictions if any are active

*/
function checkAssetCompliance(bytes32 assetId)
external
view
returns (bool status, bytes32 restrictions);
}
/**

* @title IRWAEnforceable
* @notice Interface that must be implemented by any contract handling RWA transactions
* @dev Provides hooks for regulatory compliance and emergency actions
*/
interface IRWAEnforceable {
/%%
* @notice Pre-transaction hook for regulatory compliance
* @dev Called before any asset transaction to ensure compliance
* @param assetId Identifier of the asset being transacted
* @param action Function selector of the action being performed
* @return success Boolean indicating if the transaction can proceed
*/
function beforeAssetTransaction(bytes32 assetId, bytes4 action)
external
returns (bool success);

}

/%%
* @title RWARegistry
* @notice Implementation of the central RWA registry with regulatory controls
* @dev Manages asset compliance status and enforces regulatory actions across the system
*/
contract RWARegistry is IRWARegistry {

// Mappings for system state management

mapping(address => bool) private compliantContracts; // Tracks verified compliant
contracts

mapping(bytes32 => address) private assetControllers; // Maps assets to their
controller contracts

17




/%%
* @notice Ensures asset is not under regulatory restriction
* @dev Reverts if asset is frozen, seized, or confiscated
* @param assetId Asset to check

*/
modifier checkRegulatory(bytes32 assetId) {
require(
assets[assetId].status != AssetStatus.FROZEN &&
assets[assetId].status != AssetStatus.SEIZED &&
assets[assetId].status != AssetStatus.CONFISCATED,
"Asset restricted by regulatory action"
)5
_
¥
/%%

* @notice Registers a contract as RWA compliant
* @dev Only callable by authorized regulators
* @param contractAddress Address of the contract to register
*/
function registerCompliantContract(address contractAddress)

external

onlyRegulator
{

compliantContracts[contractAddress] = true;

emit ContractRegistered(contractAddress, msg.sender);
}
/%%

* @notice Immediately freezes an asset and stops ongoing transactions
* @dev Triggers emergency hooks in all associated contracts
* @param assetId Identifier of the asset to freeze
*/
function emergencyFreeze(bytes32 assetId)
external
onlyRegulator

RWAsset storage asset = assets[assetId];

require(asset.status == AssetStatus.ACTIVE, "Asset not in active state");

// Update asset status
asset.status = AssetStatus.FROZEN;

// Notify asset controller contract
if (assetControllers[assetId] != address(0)) {
bool success = IRWAEnforceable(assetControllers[assetId])

.beforeAssetTransaction(assetId, this.emergencyFreeze.selector);

require(success, "Emergency freeze action failed");

}

emit EmergencyFreeze(assetId, msg.sender, block.timestamp);

18




/%%
* @title RWACompliantToken
* @notice Example implementation of a regulatory compliant token contract
* (@dev Demonstrates integration with RWA Registry for regulatory compliance
*/
contract RWACompliantToken is IRWAEnforceable {
IRWARegistry public immutable registry;

// Tracks pending transactions for each asset
mapping(bytes32 => mapping(uint256 => Transaction)) private pendingTransactions;
uint256 private transactionCounter;

struct Transaction {
address from;
address to;
uint256 amount;
uint256 timestamp;
bool active;

}
Vil

* @notice Ensures asset compliance before transaction
* @dev Queries registry for current compliance status
* @param assetId Asset to check
*/
modifier checkRegistry(bytes32 assetId) {
(bool compliant, bytes32 restrictions) = registry.checkAssetCompliance(assetId);
require(compliant, "Asset not compliant");
if (restrictions != bytes32(9)) {
_handleRestrictions(assetId, restrictions);
}
}

/%%
* @notice Initiates a compliant token transfer
* @dev Checks compliance and handles regulatory restrictions
* @param to Recipient address
* @param amount Amount to transfer
* @param assetId Identifier of the asset being transferred
*/
function transfer(address to, uint256 amount, bytes32 assetId)
external
checkRegistry(assetId)

// Create pending transaction
uint256 txId = _createPendingTransaction(msg.sender, to, amount, assetId);

// Perform transfer if no restrictions
_executeTransfer(txId, assetId);

19




/%%
* @notice Handles regulatory actions and emergency stops
* @dev Implements IRWAEnforceable interface
* @param assetId Asset being affected
* @param action Regulatory action being performed
* @return success Whether the action was handled successfully
*/
function beforeAssetTransaction(bytes32 assetId, bytes4 action)
external
override
returns (bool success)

require(msg.sender == address(registry), "Unauthorized regulatory action");

if (action == RWARegistry.emergencyFreeze.selector) {
_pauseAssetTransactions(assetId);
emit AssetFrozen(assetId, block.timestamp);
return true;

}

return false;

}

// Internal implementation functions...

}

OSS (Oracle State Synchronizer)

While traditional oracles merely transmitted external public data to blockchain, OSS achieves state consistency by
managing OCID-based bidirectional state change tracking and updates within Oraclizer, operated by D-quencer
consensus. The state roots updated from both directions are mathematically guaranteed for state and transition validity
through zk proofs.[12]

Notably, OSS implements a Preemptive Lock mechanism to prevent duplicate oracle contracts (double-spending) that
could occur due to network latency in cross-chain environments. For instance, when multiple DeFi protocols across
EVM chains simultaneously request oracle contracts for treasury bonds identified by the same asset ID in Oraclizer's
RWA Registry contract, OSS immediately locks that contract. This lock state persists until the ongoing oracle contract
is either completed or cancelled, fundamentally preventing duplicate oracle contracts for the same asset in cross-chain

environments.

20



DAML Contract | | CANTON Driver [0 L3 ZK-Rollup || RWA Registry | | DeFi Protocol

[State Change Everlt|
Detect [Event via Ledgdr APL
Verify OCIL

i
Check Asspl] State

P—

Reduest Asset 1

k

Generate ZK|Hroof

I

—

Lock Asset Statp

Set Lock Statuk

e

P
wery Assct Staths

L]

=

sturn Lock Statjg

Kxecute Contradt

Update State

—

-0

Contragt| Complete

Verify Completion

¢

-2
Update Result

UpHate DAML Contiagt

Figure 10. OSS Sequence Flow and Contract Lock(abstract)

Drivers: CANTON Integration

Through DAML's Observer and Signatory model, the Oraclizer CANTON Driver selectively observes and
synchronizes states only for contracts granted oracle execution authority by oracle requests. For example, in the
process of expanding liquidity for tokenized U.S. Treasury bonds, financial institutions can invite the Oraclizer party
of Oraclizer-Finance (an Oraclizer CANTON domain handling financial RWA) as a Signatory to this contract. Only
authorized assets and their state changes are propagated to the Oraclizer network through OSS and OIP.

Treasury bond tokens in ongoing DAML contracts remain locked until the DeFi contract on the EVM chain is
completed. The Oraclizer Drivers plan to extend this architecture to other enterprise DLTs, including Hyperledger
Besu, enabling more financial institutions to maximize capital efficiency through integration with DeFi protocols

while maintaining regulatory compliance through simple deployment.

21



DeFi Environment

DeFi Protocol

o Check Treasury Bond State

l o Execute Landi

=

4

0 Update Bond State

Lending Contract

CANTON Environment

Financial Institution

e Invite as Signatory

(Contract Owner)

Treasury Bond

State
Updates

A 4

Token Contract

_| Oraclizer (CANTON Domain)

as signatory

0 Event
Listening

Update
Contract via
Ledger API

ORACLIZER Network

CANTON Driver
(DAML Ledger API)

@ State
Change

Oracle State Syncronizer
(State, Message Router)

T
o Detect
. State Change

A A 4

o Sync State

RWA Registry Contract
(Treasury Bond ERC20)

State via RPC

RWA Registry Contract maintains
official state of tokenized Treasury Bond

Figure 11. Oracle Contract Mechanism via CANTON Driver

5. System Architecture

Traditional oracle systems have shown limitations in solving cost issues due to per-call fee structures and fundamental

network scalability constraints. To overcome these limitations, Oraclizer introduces innovative scaling strategies

including L3 architecture, DA modular, and zkVerify integration, enabling automated state synchronization without
additional costs after initial oracle calls, resulting in logarithmic reduction of Gas fees compared to existing oracles.

This dramatic cost reduction goes beyond mere efficiency improvements, forming the foundation for a new paradigm

of on-chain state synchronization that was previously impossible. In other words, on-chain state synchronization

implementation is fundamentally impossible without Gas fee reduction. Through these practically feasible Gas

fees, Oraclizer can achieve comprehensive state synchronization across DeFi protocols, traditional finance, and the

gaming industry.




DeFi Protocol Integration

Integration with EVM chain DeFi protocols is implemented through an architecture based on RWA Registry and
bridge contracts. The RWA Registry contract on Oraclizer(L.3) serves as the Single Source of Truth (SSOT) for
oracles RWAs, recording current states and ownership (pseudonymous identities) from external systems, and
including contract locking mechanisms to prevent double-spending across chains. This SSOT ensures reliability and
liveness for EVM chain DeFi protocols by synchronizing states from immutable external ledgers through OSS to
final L1 records, enabling verification and trading of consistent, updated RWA types, balances, identities, and

contract states.

Oraclizer's bridge contracts deployed on each EVM chain interface between that chain's DeFi protocols and the
RWA Registry contract. These bridge contracts relay requests from DeFi to the Registry and subscribe to oracle
RWA state changes for immediate DeFi updates. For example, when a lending protocol on Arbitrum wants to use

tokenized treasury bonds as collateral, the bridge contract performs the following tasks:
1. Registry Query: Verify current state, validity, and valuation information of the treasury bonds

2. State Lock Request: Request asset locking when executing loan contracts

3. State Subscription: Monitor and relay Registry state changes

(e.g., collateral value changes, regulatory actions) to DeFi

4. Contract Completion Notification: Update final state to Registry upon loan contract completion

Ethereum Arbitrum Optimism
DeFi DeFi DeFi
Contract Contract Contract
e requestContret() e requestContrct() e requestContret()
A\ 4 A\ 4 A\ 4
DeFi Bridge DeFi Bridge DeFi Bridge
WebUI Contract WebUI Contract WebUI Contract
r N r N r N
View RWA Execute & View RWA Execute & View RWA Execute &
0 List/Info o Lock ° List/Info o Lock ° List/Info o Lock
ORACLIZER L3
v

Oraclizer RWA Registry

Figure 12. DeFi Protocol Integration

Through this simple deployment structure, DeFi protocol developers can integrate oracle RWAs from external
systems with DeFi by simply referencing bridge contract addresses and calling standardized interfaces defined
by OIP specifications, without needing to implement cross-chain logic directly. This significantly reduces the

integration barrier for DeFi protocols with Oraclizer, enabling new financial business opportunities such as developing

low-risk products based on oracle state synchronization contracts with minimal changes to legacy protocols.

23



Traditional Finance Connection

Leveraging the cross-domain interoperability embedded within CANTON, we efficiently address the silo challenges
of tokenized RWA in traditional financial institutions. Each financial institution operates within its own CANTON
domain and can bridge assets on-chain through the Oraclizer-Finance CANTON domain. This architecture
transcends mere system integration, providing a framework that selectively maximizes asset liquidity while
ensuring institutional privacy and regulatory compliance.

For instance, when Bank A on CANTON.network seeks to utilize its government bonds as collateral in Arbitrum's

DeFi protocols through Oraclizer, the implementation can be initiated with the following DAML code:

DAML

module FinanceIntegration where
import DA.Date

template TreasuryBond
with
issuer: Party
owner: Party
bondId: Text
amount: Decimal
maturity: Date
observers: [Party]
where
signatory issuer, owner
observer observers

choice TransferToOraclizer : ContractId TreasuryBond
with
newOwner: Party -- Oraclizer
controller owner
do
create TreasuryBond with
issuer = issuer
owner = newOwner
bondId = bondId
amount = amount
maturity = maturity
observers = owner :: observers

choice UpdateObservers : ContractId TreasuryBond
with
newObservers: [Party]
controller owner
do
create TreasuryBond with
observers = newObservers

template OraclizerIntegrationRequest
with
requester: Party
oraclizer: Party

24



bond: ContractId TreasuryBond
where

signatory requester

observer oraclizer

choice Accept : ContractId TreasuryBond
controller oraclizer
do
exercise bond TransferToOraclizer with
newOwner = oraclizer

choice Reject : ()
controller oraclizer
do

pure ()

CANTON configuration and routing(bash):

canton {
domains {
bankA {
domain-id = "BankA.canton.domain"
public-api {
port = 5018
address = "localhost"
}
}

oraclizer-finance {
domain-id = "Oraclizer-Finance.canton.domain"
public-api {
port = 5019
address = "localhost"
}
}
}

participants {
bank {
domains
}
oraclizer {
domains = ["Oraclizer-Finance.canton.domain"]

}

["BankA.canton.domain", "Oraclizer-Finance.canton.domain"]

}
}

25




CANTON.network

Bank A Participant

Treasury Bond Contract

Ownership Transfer
by Contract Invitation

Oraclizer-Finance Domain

A

State Transfer
by Contract Invitation

\4

Oraclizer Participant

Integrated
Financial-RWA Contract

Ownership Transfer
by Contract Invitation

A

State Transfer
by Contract Invitation

Oracle Caster Domain

\4

Treasury Bond

Oracle Caster Participant Tokenization Contract

Figure 13. CANTON Driver Architecture
Gaming RWA Integration

Unlike existing RWA tokenization solutions that primarily focused on financial assets, Oraclizer presents a new
vision for comprehensive RWA that enables game assets to be treated as tokenized RWA within a secure
regulatory-compliant environment. Game companies face constraints in registering games with tokens on
application platforms (e.g., App Store, Play Store). However, tokenization of game assets through Oraclizer allows
them to leverage blockchain benefits without regulatory constraints, similar to how tokenized treasury bonds are not
classified as virtual assets. Since the Oraclizer-Gaming CANTON domain provides the same level of regulatory
compliance and oracle interoperability as the Oraclizer-Finance CANTON domain, game companies gain the

opportunity to safely advance their in-game economics without issuing virtual assets.

Finance Domain Gaming Domain

Banks Oracle Caster Game Company A Game Company B Game Company C
DAML Contract DAML Contract DAML Contract DAML Contract DAML Contract
(Financial-RWA) (Tokenized-RWA) (Game Asset) (Game Asset) (Game Asset)

I CANTON Protocol I I CANTON Protocol I CANTON Protocol I
Oraclizer-Finance CANTON Domain Oraclizer-Gaming CANTON Domain

CANTON Sync
(State/Event Updates)

CANTON Sync
(State/Event Updates)

ORACLIZER Core

Oracle State Synchronizer(OSS)

I State Changes

L3 ZK-Rollup RWA Registry Contract(EVM)

Figure 14. Oracle Contract for Gaming RWA via Oraclizer

26



The core limitations faced by traditional GameFi were regulatory risks from virtual asset issuance and unsustainable
gameplay overly dependent on token economics. This not only hindered entry into traditional application platforms but
also compromised the inherent fun factor of games. Oraclizer fundamentally resolves these issues by treating game
assets as RWA. While game companies can maintain their existing game systems while leveraging expanded
economic elements through tokenization, players can maintain their original gaming experience without
conscious interaction with complex token economics, naturally utilizing asset value, thus enabling the true

fusion of gaming and finance that GameFi envisioned.

My Asset Accounts Your accounts for each game display the game assets you
owner of the corresponding Game Asset Holding Account

*
®.
a

Pending Activities

Create Gold (Guardian)
246
Q Power Pack (Guardian)
50
i} Star (Guardian)
491

@ Unity @GL Astronomy Guardian

© ORACLIZER

The ORACLIZER Contract Explorer

Latest Offsets Latest Transactions
2 Assel:Asset From party-86e28c85-de2d-43b8-b997-73f64d203807::1...
115554 2 2 si 0 ob: — 8d69f11343...
@ i~ svenis e slynatorias B0 obsarver - fo party-86e28c85-de2d-43b8-b997-73164d203807::1
Transfer:  10.0 Power Pack (Guardian) Transfer:  10.0 Power Pack (Guardian)
2 Asset:Asset From party-86e28c85-de2d-43b8-b997-73164d203807::1
@ 115552 2 15 2 signat 0 ob — 68c90bab51..
events 2 signatories 0 observer - to party-86e28c85-de2d-43b8-b997-73(64d203807::1...
Transfer:  100.0 Star (Guardian) Transfer:  100.0 Star (Guardian)
2 Asset::Asset From party-86e28c85-de2d-43b8-b997-73164d203807::1.
115550 2 A e — ba1319f692...
@ gvents R glonatorias 0 observer g to pary-86e28c85-de2d-43b8-b997-73f64d203807::1
Transfer: 50.0 Gold (Guardian) Transfer: 50.0 Gold (Guardian)
115548 1 Account::AirdropRequest - 152dd44174...
@ 1event 1 signatory 1 observer =
115547 1 Account::AirdropRequest P dc61217fea...
8 12 minitae ann 1 event 1 cinnatnn: 1 nheenver —

Figure 15. Tokenized Gaming RWA Demo and RWA Contract Explorer in Oracle Caster

6. Performance Analysis

While on-chain and oracle state synchronization has been a long-standing dream in the blockchain industry, it remained
unrealized due to technical issues and limitations in scalability and Gas fees. For an oracle state machine to succeed,

a practical scaling strategy is essential to address cross-chain latency and performance overhead during continuous state
reflection. If the cumulative costs of cascading transactions triggered by a single oracle call exceed the expected benefits,

it ultimately threatens the system's viability.

27



Moreover, without ensuring oracle data reliability from untrusted external systems, a decentralized state machine at
Stage 1 level, and a robust regulatory compliance framework, both implementation and operation of such an
innovative system are impossible. Implementing an oracle state machine requires demonstrable results for

scalability, economic efficiency, security, and regulatory compliance.
Scalability Metrics

Oraclizer's scalability has unique architectural advantages specific to state synchronization oracles. While traditional
oracles must process new data independently end-to-end for each call, with verification overhead increasing linearly
with call frequency, state synchronization oracles maximize scalability through incremental proving and modular layer
scaling strategies as transactions accumulate. This is achieved through state transition mechanisms that only prove
state differences (state diffs) to SSOT, high compression via Blob-hash DA layer, and zkVerify's verification
optimization.

For example, when processing treasury bond price changes through oracle:

1. Traditional Oracles: Require new independent transactions for each price change, necessitating complete

verification for each

2. Oraclizer: Stores only incremental proofs of price differences as SSOT, with enhanced efficiency through

L3 incremental proving, off-chain DA, and zkVerify utilization

Oracle Processing Performance

) T T T
Legacy: Efficiency degrades with load
%\ 4 Oraclizer: Increases through optimization
~
&
=
3
= 3
s
o
j=
g
¥ ¢
i 2
=
&0
5
= 1
n —— Legacy Oracles fe
Oraclizer
[] | | | | |

0 10 20 30 40 a0 60 70 80 90 100

Number of Oracle Transactions (thousands)

Figure 16. State Synchronization Oracle Specificities
that Increase Performance as Oracle Tx Demand Increases

Oraclizer's incremental proving approach is similar to Git's differential storage method. Just as Git efficiently manages
only changed portions instead of storing the entire codebase repeatedly, Oraclizer achieves exceptional efficiency by

proving only state differences and synchronizing them through various scaling strategies.

28



Cost Analysis

Gas fees present the greatest technical challenge in implementing state synchronization oracles. From a pricing policy
perspective, implementing state synchronization with existing oracle solutions requires new oracle calls each time,
incurring independent costs for each call. Traditional oracles operate inefficiently, similar to making and paying

for new API calls each time to track real-time stock prices.

In contrast, Oraclizer provides an innovative cost structure enabling continuous state synchronization without
additional costs after the initial oracle contract. This, combined with its unique characteristic of logarithmically
decreasing Gas fees as transactions increase through higher-order layers and computational offload modulars with DA
layer for reduced zk verification costs, dramatically lowers user costs. This is achieved through the combined effect of

the following technical factors:

1. Incremental State Processing Optimization
In L3 structure, consecutive transactions can reuse proofs of previous states. For example, when treasury
bond prices change from 100—110—120, proving the 120 state requires only an incremental proof of the
110—120 change, not a complete proof from 100. This enables optimized proof generation utilizing

previous proofs, beyond simple state diffs.

2. Cumulative Data Optimization
Off-chain DA layer discovers and optimizes redundancies in consecutive transaction data structures. As
transactions accumulate, data patterns become more predictable, leading to more efficient data compression.

This is similar to how ZIP compression achieves higher compression rates with more similar data.

3. Verification Cost Reduction
Consecutive transaction verification in zkVerify can utilize previous verification results. For instance,
verification of the nth transaction builds on the (n-1)th verification result, eliminating the need to re-verify
the entire state. This leads to optimization of the verification logic itself, beyond simple incremental

verification.

These technical optimizations enable practical implementation of state synchronization oracles. While traditional
oracles' repetitive calls and accumulating cost structure made state synchronization implementation difficult,
Oraclizer's approach fundamentally resolves this issue. For example, in cases requiring asset price
synchronization at one-minute intervals over 24 hours, traditional oracles need 1440 individual calls with

associated costs, while Oraclizer can process this with no additional costs beyond the initial contract fee.

In particular, Oraclizer's RWA Registry maintains the latest state until actual state changes occur in external systems
or blockchains. This eliminates unnecessary oracle calls and enables access to current information through simple
on-chain state queries. By reducing the number of transactions needed for state updates through on-chain SSOT,

it further enhances the overall system's cost efficiency.

29



Relative Gas Cost per Oracle Transaction

= 3 I I \

— Legacy Oracles (per-call cost)
l 95 —— Oraclizer (optimized sync)
3

o

&

= 2

o

-

@]

5 15| .
8

&0

@

- .

—r l . |
=

w

Q

@)

£ 05

"5 \

T

fa'=] 0 I | I ! ?

0 10 20 30 40 50 60 70 80 90 100

Number of Oracle Transactions (thousands)

Figure 17. Analyzing Gas Cost for Oraclizer vs. Legacy Oracles

Gas fees reducing on a logarithmic scale by over 93% per Tx translate to service costs, establishing the foundation for

an innovative pricing policy that enables continuous state synchronization services with just a single oracle call fee.

Security Evaluation

Implementing state synchronization with external systems while maintaining blockchain's decentralized nature entails
complex security challenges. An oracle state machine must ensure reliability of both blockchain and non-blockchain
systems, while addressing various security threats that may arise in cross-chain environments after states transition on-
chain. Oraclizer achieves Stage 1 rollup through the D-quencer consensus algorithm, serving as a key element that

simultaneously ensures system decentralization and security.

D-quencer Sccurity-Performance Analysis

5
Node Scale: 10 — 100

= 45 100
=)
g 4
=
i
ey |
Z 35 Optimal Zone(37-52 nodes) |
g Based on BFT & Network An ybis
wn
2 3
@
T
M25

2 : .

2 2.5 3 3.5 4 4.5 D

Relative Performance Index (0-5)

Figure 18. Evaluation of Security and Performance Indexes
based on The Number of D-quencer Nodes

30



Through simulations and testing of how the D-quencer consensus algorithm affects BFT security thresholds,
consensus delay overhead, network message complexity, and VRF entropy (random function unpredictability)
based on node fluctuations, we found that minimum security standards could be met with at least 10 nodes, relative
efficiency indices were optimal in the 37-52 node distribution range, and marginal utility in security-performance
relative indices decreased beyond 90-100 nodes, leading to an evaluation of 100 nodes as the maximum node
threshold.

Compliance Verification

RCP, as the blockchain industry's first regulatory research comprehensively analyzing financial regulatory
authorities' recommendations and financial product guidelines, maintains value-neutral public interest rather than
representing specific group or individual claims. Solutions related to tokenized RWA in capital markets must comply
with the core value of maintaining financial market order. RCP's 31 regulatory items provide objective criteria for
measuring these solutions' regulatory compliance levels. This verification evaluates system regulatory compliance

according to five core principles: completeness, traceability, confidentiality, enforceability, and tokenization.

Property | ORACLIZER | Legacy Oracle Solutions
Finality

v  Bidirectional state sync X Simple data delivery only

v Cross-chain atomicity guarantee X Lack of state synchronization

v Complete state transition X No atomicity guarantee
Traceability

v KYC integration with OCID X Limited transaction tracking

(System-wide AML) ) ) ]
X No unified identity management
v Complete asset movement track- ] . .

ing ® Partial supervision capability

v" Regulatory supervision support

Confidentiality
v Need-to-know based disclosure X Limited privacy protection
v ZK-based privacy protection X No selective disclosure
v Selective information sharing
Enforceability
v Asset freeze/forced liquidation X No regulatory mechanisms
v Immediate regulatory action X Limited asset control
v Cross-chain enforcement X Unable to enforce regulations
Tokenizability
v Clear rights relationship X Lack of standardization
v Legal binding framework X No legal binding power

Table 1. Regulatory Compliance Analysis: Oraclizer vs Legacy Oracle Solutions

31



RCP compliance goes beyond mere technical differences to establish new standards for operationally viable
oracle solutions in capital markets. Oraclizer's high-level regulatory compliance principles enable it to serve as a
reliable bridge between TradFi and DeFi and represent essential prerequisites for state synchronization oracles to

function in real financial environments.
RCP Compliance Rate Analysis

100 '
] |Oc ORACLIZER
%0 B8 Legacy Oracle Solutions
g\j —
o)
s 60
~
g
5
=2 40
g
o
@)
20
M 3 3 s S
& S Regul@ﬁjry Propertig® X
< % bt?} & v
& S S ¥
C)OQ @Q &0

Figure 19. Quantitative Analysis of RCP Fulfillment

7. Future Development

We have opened new horizons for oracle state synchronization, but this is just the beginning. Our greatest challenge
was first achieving complete state synchronization in cross-chain and oracle environments, for which we presented
solutions from the perspective of proper direction, including regulatory research, for various technical strategies and

viable services. However, more important is considering how this technology will be used in the real world.

For example, our planned integration with Intent Standard Protocol'? is not merely adding functionality, but rather

our effort to reinterpret oracle contracts from a user perspective. Our pursuit of bridgeless architecture represents an

attempt to overcome fundamental limitations in the current cross-chain ecosystem, while SMT smart merging'!

research expresses our commitment to continuously improving system efficiency.

Particularly, expanding from the traditional financial RWA-focused tokenization market to the gaming industry holds
significant meaning in pioneering new markets. Overcoming the limitations of existing GameFi and realizing true
game asset liquidity will be an important milestone in proving blockchain technology's practical value.

These challenges will be realized one by one through systematic roadmap execution and continuous research and

development.

10. Enhances cross—chain interoperability by enabling declaration of intentions such as token swaps and governance voting across multiple chains
11. Technology for efficiently merging multiple Merkle trees. Improves verification speed and storage efficiency while maintaining data consistency through tree
structure optimization

32



Research Directions

While we have presented a new paradigm of bidirectional synchronization contracts through oracle state machines,
there remain areas requiring improvement. We continue to analyze the system's limitations and conduct research to

find better solutions.

1. Intent-based Oracle Contract Research: Current oracle contracts remain structurally complex, limiting

user experience. We aim to improve this through integration of ERC-7683[13] standard and OIP.

* Abstracting complex cross-chain oracle requests into single intents
* Automatic derivation of optimal execution paths based on user intentions

* Enhanced automation level of state synchronization processes

2. Bridgeless Architecture Expansion: Oraclizer already achieves partial bridgeless functionality through

integrated zk bridges. However, this needs to be expanded to broader cross-chain environments.

3. Privacy-Compliant API Drivers: Beyond DLTs like DAML that provide privacy from ledger
infrastructure, privacy protection in more diverse environments is needed for integrating general external

systems.

* Developing new API communication protocols based on zk proofs

* Data processing utilizing Fully Homomorphic Encryption

4. SMT Smart Merging Optimization: Given the appchain characteristics, current state management systems

have room for optimization.

+ Improving incremental state update efficiency
* Researching integration possibilities with Verkle Trees!?

+ Enhancing Merkle proof generation speed through parallel processing

While these research initiatives are conducted independently, they will ultimately converge into a unified system.
In particular, we anticipate that Intent-based contracts and expanded bridgeless architecture will open new horizons

for cross-chain state synchronization.
Roadmap

2025.Q1

* Integration of OZ token as Oraclizer's native gas token
* Initiation of ERC-7683 Intent protocol integration development
* Launch of Oraclizer testnet (with ZkEVM support)

NEW-EIP: RCP (informational-EIP), regulatory enforcement-related (Standard-EIP)

12. Data structure for state storage optimization, generating smaller proofs than Merkle trees

33



2025.Q2

* Configuration of Oraclizer CANTON network and driver integration testing
* Integration of zkVerify and DA modular

* KYC integration

* Oracle Caster (j3)

* Gaming RWA expansion (Oraclizer-Gaming)
2025.Q3-Q4

* Mainnet launch
» New chain expansion: Arbitrum, Optimism, Base

* Real estate RWA expansion (Oraclizer-RE)

2026.H1

* Development of SMT smart merging prototype
* Development of Intent-based oracle contract prototype

* Expansion of privacy-compliant API drivers

2026.H2

» Expansion of bridgeless architecture
* Integration of SMT smart merging (performance scaling)

» Enhancement of cross-chain scalability

2027

* Implementation of multi-state (multiple timepoint) rollback system (fault tolerance)

* Digital asset regulatory standardization framework (open source)

Ecosystem Expansion

We aim to initiate a new oracle ecosystem centered on financial RWA. This is a deliberate choice to validate system

stability and reliability by starting in the most stringent regulatory environment. However, the true value of state

synchronization oracles will be realized in connecting with broader ecosystems.

Collaboration with DeFi protocols carries meaning beyond simple partnerships. We have deeply understood each

protocol's unique requirements and undergone the process of organically integrating them into our architecture.

Collaboration with global financial institutions requires an even more cautious approach. While respecting each

institution's regulatory requirements and operational methods, we will jointly build a framework for efficient

tokenization and utilization of RWA.

34



Expansion into the gaming industry requires particularly careful consideration. The Oraclizer-Gaming domain will
evolve toward realizing true value of game assets while preserving the essential fun of gaming. A new challenge in the
real estate market also awaits. While real estate RWA must consider complex elements such as SPCs, valuation, legal

structures, and liquidity, it represents a challenge we must undertake for efficient utilization of physical assets.

The developer ecosystem will form the foundation for all these expansions. We will provide necessary tools and
support for developers to realize their innovative ideas through Oraclizer. This means building a collaborative

ecosystem that develops the new paradigm of state synchronization oracles together, beyond mere technical support.

8. Conclusion

The 'Oracle Problem,' which has been viewed as a fundamental limitation of blockchain, has evolved from its simple
beginnings of connecting external data into increasingly complex and sophisticated forms. However, oracles enabling
true state synchronization have remained unattainable due to technical limitations, network costs, and regulatory
compliance challenges. As the first oracle state machine to overcome these limitations and achieve complete state

synchronization, Oraclizer presents a new thesis to the blockchain industry.

Oraclizer serves as a new 'knowledge layer' in the EVM ecosystem that can directly understand and process
the complete state and changes of RWAs on-chain. Through this, smart contracts can comprehensively handle not
just simple oracle data, but asset states, regulatory compliance status, and contract conditions, expanding the

application scope of oraclized information.

The RWA tokenization market is projected to grow from a minimum of $4 trillion to a maximum of $30 trillion by
2030[14]. As an oracle state machine, Oraclizer creates network value equivalent to the combined scale of the
RWA tokenization market and DeFi protocols attempting oracle requests. Moreover, potential expansion into
new RWA domains beyond financial assets, such as the gaming industry and real estate market, signifies the

potential for continuous growth in the Oraclizer ecosystem's value.

When massive capital markets become tokenized and connected to DeFi through Oraclizer, the resulting innovation
in capital efficiency will bring us one step closer to realizing the ultimate goal that blockchain technology has been

pursuing.

35



References

[1] IntoTheBlock and Trident Digital. (2024). DeFi's Next Frontier: In-Depth Report on Institutional DeFi. Globe

Newswire.

[2] Financial Action Task Force (FATF). (2023). Updated Guidance for a Risk-Based Approach to Virtual Assets
and Virtual Asset Service Providers.

[3] Digital Asset. (2024). DAML: The Contract Language for Building Composable Multi-party Applications.
https://www.digitalasset.com/daml

[4] Financial Stability Board. (2023). Regulation, Supervision and Oversight of Crypto-Asset Activities and Markets.

https://www.fsb.org/2023/07/regulation-supervision-and-oversight-of-crypto-asset-activities-and-markets-2023-

progress-report/

[5] Horizen Korea, & Oraclizer Core. (2024). Regulatory Compliance Protocol (RCP) for Tokenized Capital Markets.
https://www.slideshare.net/slideshow/embed code/key/kAZFXrBLjtking

[6] Ethereum Foundation. (2023). EIP-1400: Security Token Standard.
https://eips.ethereum.org/EIPS/eip-1400

[7] Ethereum Foundation. (2023). EIP-3643: T-REX Token for Regulated EXchanges.
https://eips.ethereum.org/EIPS/eip-3643

[8] Chainlink. (2023). The Blockchain Oracle Problem.
https://chain.link/education-hub/oracle-problem

[9] Caldarelli, G., & Ellul, J. (2021). The Blockchain Oracle Problem in Decentralized Finance—A Multivocal
Approach. Applied Sciences, 11(16), 7572. https://doi.org/10.3390/app1 1167572

[10] Ethereum Foundation. (2023). EIP-3770: Chain-specific addresses. https://eips.ethereum.org/EIPS/eip-3770

[11] Digital Asset. (2024). DAML: The Contract Language for Building Composable Multi-party Applications.
https://www.digitalasset.com/daml

[12] Matter Labs. (2023). zkSync: Scaling and privacy engine for Ethereum based on ZK Rollup. Retrieved from
https://zksync.io/zksync.pdf

[13] Ethereum Foundation. (2023). EIP-7683: Intent-based Transactions. Retrieved from
https://eips.ethereum.org/EIPS/eip-7683

[14] Tren Finance. (2023). Real World Asset (RWA) Tokenization Market Forecast 2030. Retrieved from
https://www.chaincatcher.com/en/article/2147534

36


https://www.digitalasset.com/daml
https://www.fsb.org/2023/07/regulation-supervision-and-oversight-of-crypto-asset-activities-and-markets-2023-progress-report/
https://www.slideshare.net/slideshow/embed_code/key/kAZFXrBLjtkinq
https://eips.ethereum.org/EIPS/eip-1400
https://eips.ethereum.org/EIPS/eip-3643
https://chain.link/education-hub/oracle-problem
https://doi.org/10.3390/app11167572
https://www.digitalasset.com/daml
https://zksync.io/zksync.pdf
https://eips.ethereum.org/EIPS/eip-7683
https://www.chaincatcher.com/en/article/2147534
https://www.fsb.org/2023/07/regulation-supervision-and-oversight-of-crypto-asset-activities-and-markets-2023-progress-report/
https://www.digitalasset.com/daml
https://www.slideshare.net/slideshow/embed_code/key/kAZFXrBLjtkinq
https://eips.ethereum.org/EIPS/eip-1400
https://eips.ethereum.org/EIPS/eip-3643
https://chain.link/education-hub/oracle-problem
https://doi.org/10.3390/app11167572
https://eips.ethereum.org/EIPS/eip-3770
https://www.digitalasset.com/daml
https://zksync.io/zksync.pdf
https://eips.ethereum.org/EIPS/eip-7683

